2(y^2+5y-198)=0

Simple and best practice solution for 2(y^2+5y-198)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(y^2+5y-198)=0 equation:



2(y^2+5y-198)=0
We multiply parentheses
2y^2+10y-396=0
a = 2; b = 10; c = -396;
Δ = b2-4ac
Δ = 102-4·2·(-396)
Δ = 3268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3268}=\sqrt{4*817}=\sqrt{4}*\sqrt{817}=2\sqrt{817}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{817}}{2*2}=\frac{-10-2\sqrt{817}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{817}}{2*2}=\frac{-10+2\sqrt{817}}{4} $

See similar equations:

| 2(y^2+5y-198=0 | | 82=9/2r | | 4x=6x-27 | | .50x+.25(70)=39.5 | | 9x+8x-2x-5=10 | | 2/3|x+4|-5=7 | | 3u-11=8u+11 | | 6x^2=-21x-9 | | 7800=1/2a×20^2 | | 3u-11u=8u+11 | | 7800=1/2a20^2 | | c/3=30/5 | | 19-9/4x=10 | | 3/4x-2/8=60 | | 2-3x-1=5-x+3 | | H=5x-5 | | -(4-3p)-5p=16+3p | | 2-3x+1=5-x-3 | | H=5x+5 | | 0.05=x^2/2-x | | 2/3x×1/3=-7/3 | | (x)^2-13X+28=0 | | .5x/18=62 | | 4x2+-5x-4=0 | | |3x-1|=|5-2x| | | |3x-1|=|5-2| | | (3/8)x-14=1 | | (6x)^2-12x+72=0 | | 0.04x+0.03(4x)=1600 | | 7-5a=8+a | | 2y-6=9y+8 | | 15/7=q/17 |

Equations solver categories